20 research outputs found

    Perspectives in visual imaging for marine biology and ecology: from acquisition to understanding

    Get PDF
    Durden J, Schoening T, Althaus F, et al. Perspectives in Visual Imaging for Marine Biology and Ecology: From Acquisition to Understanding. In: Hughes RN, Hughes DJ, Smith IP, Dale AC, eds. Oceanography and Marine Biology: An Annual Review. 54. Boca Raton: CRC Press; 2016: 1-72

    A framework for the development of a global standardised marine taxon reference image database (SMarTaR-ID) to support image-based analyses

    Get PDF
    Video and image data are regularly used in the field of benthic ecology to document biodiversity. However, their use is subject to a number of challenges, principally the identification of taxa within the images without associated physical specimens. The challenge of applying traditional taxonomic keys to the identification of fauna from images has led to the development of personal, group, or institution level reference image catalogues of operational taxonomic units (OTUs) or morphospecies. Lack of standardisation among these reference catalogues has led to problems with observer bias and the inability to combine datasets across studies. In addition, lack of a common reference standard is stifling efforts in the application of artificial intelligence to taxon identification. Using the North Atlantic deep sea as a case study, we propose a database structure to facilitate standardisation of morphospecies image catalogues between research groups and support future use in multiple front-end applications. We also propose a framework for coordination of international efforts to develop reference guides for the identification of marine species from images. The proposed structure maps to the Darwin Core standard to allow integration with existing databases. We suggest a management framework where high-level taxonomic groups are curated by a regional team, consisting of both end users and taxonomic experts. We identify a mechanism by which overall quality of data within a common reference guide could be raised over the next decade. Finally, we discuss the role of a common reference standard in advancing marine ecology and supporting sustainable use of this ecosystem

    Minimising disparity in distribution for unsupervised domain adaptation by preserving the local spatial arrangement of data

    No full text
    Domain adaptation is used for machine learning tasks, when the distribution of the training (obtained from source domain) set differs from that of the testing (referred as target domain) set. In the work presented in this study, the problem of unsupervised domain adaptation is solved using a novel optimisation function to minimise the global and local discrepancies between the transformed source and the target domains. The dissimilarity in data distributions is the major contributor to the global discrepancy between the two domains. The authors propose two techniques to preserve the local structural information of source domain: (i) identify closest pair of instances in source domain and minimise the distances between these pairs of instances after transformation; (ii) preserve the naturally occurring clusters present in source domain during transformation. This cost function and constraints yield a non‐linear optimisation problem, used to estimate the weight matrix. An iterative framework solves the optimisation problem, providing a sub‐optimal solution. Next, using orthogonality constraint, an optimisation task is formulated in the Stiefel manifold. Performance analysis using real‐world datasets show that the proposed methods perform better than a few recently published state‐of‐the‐art methods

    Deep learning for marine species recognition

    No full text
    Research on marine species recognition is an important part of the actions for the protection of the ocean environment. It is also an under-exploited application area in the computer vision community. However, with the developments of deep learning, there has been an increasing interest about this topic. In this chapter, we present a comprehensive review of the computer vision techniques for marine species recognition, mainly from the perspectives of both classification and detection. In particular, we focus on capturing the evolution of various deep learning techniques in this area. We further compare the contemporary deep learning techniques with traditional machine learning techniques, and discuss the complementary issues between these two approaches. This chapter examines the attributes and challenges of a number of popular marine species datasets (which involve coral, kelp, plankton and fish) on recognition tasks. In the end, we highlight a few potential future application areas of deep learning in marine image analysis such as segmentation and enhancement of image quality
    corecore